CLASS 17

BJT currents and parameters

$$\bullet \qquad I_E = I_{Ep} + I_{En}$$

$$\bullet \qquad \mathbf{I}_{\mathbf{C}} = \mathbf{I}_{\mathbf{Cp}} + \mathbf{I}_{\mathbf{Cn}}$$

$$\bullet \qquad \mathbf{I}_{\mathbf{B}} = \mathbf{I}_{\mathbf{B}\mathbf{B}} + \mathbf{I}_{\mathbf{E}\mathbf{n}} - \mathbf{I}_{\mathbf{C}\mathbf{n}}$$

•
$$I_{BB} = I_{Ep} - I_{Cp}$$

$$\bullet \qquad \mathbf{I_E} = \mathbf{I_B} + \mathbf{I_C}$$

- I_{En} = current produced by the electrons injected from B to E
- I_{Cn} = current from the electrons thermally generated near the edge of the C-B junction that drifted from C to B.

$$\bullet \qquad \mathbf{I}_{\mathbf{B}} = \mathbf{I}_{\mathbf{E}} - \mathbf{I}_{\mathbf{C}}$$

$$\bullet \qquad = \mathbf{I}_{Ep} + \mathbf{I}_{En} - \mathbf{I}_{Cp} - \mathbf{I}_{Cn}$$

$$\bullet \qquad = \mathbf{I}_{Ep} - \mathbf{I}_{Cp} + \mathbf{I}_{En} - \mathbf{I}_{Cn}$$

$$\bullet \qquad = \mathbf{I}_{BB} + \mathbf{I}_{En} - \mathbf{I}_{Cn}$$

- An important BJT parameter is the common-base (CB) current gain, α_0 .
- $\begin{array}{ll}
 \bullet & \alpha_{o} = I_{Cp} / I_{E} \\
 &= I_{Cp} / (I_{Ep} + I_{En}) \\
 &= I_{Cp} I_{Ep} / [I_{Ep} (I_{Ep} + I_{En})] \\
 &= [I_{Ep} / (I_{Ep} + I_{En})][I_{Cp} / I_{Ep}] \\
 &= \gamma \alpha_{T}
 \end{array}$
- Emitter efficiency, $\gamma = I_{Ep} / (I_{Ep} + I_{En})$ = I_{Ep} / I_{E}
- Base transport factor, $\alpha_T = I_{Cp} / I_{Ep}$
- Since $\alpha_o = \gamma \alpha_T$ and $I_{En} << I_{Ep}$, then $I_{Ep} \approx I_E$. Hence, $\gamma \approx 1$.
- $I_{Cp} \approx I_{Ep}$. Thus, $\alpha_T \approx 1$. Consequently, $\alpha_o \approx 1$.

$$\bullet \quad \mathbf{I}_{\mathbf{C}} = \mathbf{I}_{\mathbf{Cp}} + \mathbf{I}_{\mathbf{Cn}}$$

• As
$$\alpha_T = I_{Cp} / I_{Ep}$$
, $I_C = \alpha_T I_{Ep} + I_{Cn}$

• Since $\alpha_0 = \gamma \alpha_T$ and $\gamma = I_{Ep} / I_E$:

$$I_{C} = (\alpha_{o} / \gamma) \gamma I_{E} + I_{Cn}$$

$$I_{C} = \alpha_{o} I_{E} + I_{Cn}$$

$$I_{E} = I_{R} + I_{C}$$

 I_{Cn} can be determined by measuring the current flowing across the B-C junction when E is an open-circuit. $I_E = 0$.

The value of I_{Cn} under this condition is known as $I_{CBO.}$ I_{CBO} represents the leakage current between C and B when E-B is open circuited.

• Collector current for the CB configuration is represented by the expression:

$$\mathbf{I}_{\mathbf{C}} = \mathbf{\alpha}_{\mathbf{0}} \, \mathbf{I}_{\mathbf{E}} + \mathbf{I}_{\mathbf{CBO}}$$

- The conventional current flow is always in the opposite direction as the flow of electron.
- The conventional current flow is always in the same direction as the flow of holes.
- The flow of holes is always opposite with the flow of electrons.
- The general equation that relates the emitter, collector and base currents is:

$$\mathbf{I}_{\mathbf{E}} = \mathbf{I}_{\mathbf{B}} + \mathbf{I}_{\mathbf{C}}$$

Holes are injected from E to B when the E-B junction is fb. Holes will then diffuse across B and reach the B-C junction.

$$qV_{EB}$$
/kT
$$P_{n}(0) = p_{no}e$$
where:

where:

 p_{no} = density of the minority carriers under equilibrium condition.

$$= n_i^2/N_B$$

= donor density in B.

kT/q = temperature equivalent voltage

The existence of the density gradient of ¹¹E0 holes in B shows that the holes injected from E will diffuse across B to the edge of the B-C depletion region before they are swept into C by the electric field across B-C.

$$P_n(0) = p_{no}e^{(qV_{EB})/kT}$$

• If the E-B junction is fb, the minority carrier density at the edge of the E-B depletion region (at x=0) is increased beyond its equilibrium value by a factor of:

$$e^{\left(qV_{\mathrm{EB}}\right)\!/kT}$$

- $P_n(W) = 0$
- Under the rb condition, the minority carrier density at the edge of the B-C depletion region (x = W) is 0.
- If the B is very narrow (i.e. $W/L_p \ll 1$):

$$P_{n}(x) = p_{no}e^{\left(qV_{EB}\right)/kT} \left[1-\left(x/W\right)\right]$$

$$P_n(x) = p_{no}e^{(qV_{EB})/kT}$$
 $[1-(x/W)]$

This expression is close to the real minority carrier distribution in B. The assumption that the minority carrier distribution in B is linear simplifies the derivation of the I-V characteristic.

$$n_{E}(x = -x_{E}) = n_{Eo} e$$

$$n_{C}(x = x_{C}) = n_{Co} e$$

$$|-qV_{CB}|$$

$$n_{C}(x = x_{C}) = n_{Co} e = 0$$

where n_{Eo} and n_{Co} are the electron densities under equilibrium condition for the E and C, respectively.

$$n_{E}(x) = n_{Eo} + n_{Eo} \left[e^{\left(qV_{EB}\right)/kT} - 1 \right] e^{\left(x + x_{E}\right)/L_{E}}$$

for $x \le -x_E$

$$n_{C}(x) = n_{Co} - n_{Co}e^{-(x - x_{C})/L_{C}}$$
for $x \ge x_{C}$

Transistor currents in the active mode of operation

The hole current, I_{Ep} , injected from E at x=0 is proportional to the gradient of the minority carrier density.

$$I_{Ep} = A \left[-qD_{p} \frac{dp_{n}}{dx} \Big|_{x=0} \right]$$

$$\approx \frac{qAD_{p}p_{no}}{W} e^{(qV_{EB})/kT}$$

The hole current collected by C at x=W is

$$I_{Cp} = A \left[-qD_{p} \frac{dp_{n}}{dx} \Big|_{x=W} \right]$$

$$\approx \frac{qAD_{p}p_{no}}{W} e^{(qV_{EB})/kT}$$

 $I_{Ep} = I_{Cp}$ for $\frac{W}{L_p} << 1$ (i.e. when B is narrow)

 I_{En} is produced by the flow of electrons from B to E.

$$I_{En} = A \left[qD_{E} \frac{dn_{E}}{dx} \Big|_{x=-x_{E}} \right]$$

$$= \frac{qAD_{E}n_{Eo}}{L_{E}} \left[e^{(qV_{EB})/kT} - 1 \right]$$

 L_E is the diffusion length of the electron in the E.

 D_E is the diffusion constant for the electron in E.

 I_{Cn} is produced by the flow of electrons from C to B.

$$I_{Cn} = A \left[qD_{C} \frac{dn_{C}}{dx} \right]_{x=x_{C}}$$

$$= \frac{qAD_{C}n_{Co}}{L_{C}}$$

 L_{C} is the diffusion length of the electron in the C.

 $\mathbf{D}_{\mathbf{C}}$ is the diffusion constant for the electron in \mathbf{C} .

$$\begin{split} &I_{E} = I_{Ep} + I_{En} \\ &= \frac{qAD_{p}p_{no}}{W} e^{\left(qV_{EB}\right)/kT} + \frac{qAD_{E}n_{Eo}}{L_{E}} \Bigg[e^{\left(qV_{EB}\right)/kT} - 1 \Bigg] \\ &I_{C} = I_{Cp} + I_{Cn} \\ &= \frac{qAD_{p}p_{no}}{W} e^{\left(qV_{EB}\right)/kT} + \frac{qAD_{C}n_{Co}}{L_{C}} \\ &I_{B} = I_{E} - I_{C} \\ &\frac{qAD_{E}n_{Eo}}{L_{E}} \Bigg[e^{\left(qV_{EB}\right)/kT} - 1 \Bigg] - \frac{qAD_{C}n_{Co}}{L_{C}} \end{split}$$

- The current in each terminal (E,B and C) is determined mostly by the minority carrier distribution in B.
- I_C is independent of V_{BC} as long as the B-C junction is rb.
- If it is assumed that there is no recombination in B, $I_{EP} = I_{CP}$. Hence,
- $\bullet \quad \mathbf{I_{BB}} = \mathbf{I_{Ep}} \mathbf{I_{Cp}} = \mathbf{0}$
- $I_B = I_{BB} + I_{En} I_{Cn} = I_{En} I_{Cn}$

QUESTION

The p⁺-n-p transistor has 10^{19} , 10^{17} and 5x 10^{15} cm⁻³ impurity density in each E, B and C, respectively. The lifetime is 10^{-8} , 10^{-7} and 10^{-6} s. Assume that the cross-section area, A=0.05 mm² and the E-B junction is fb by a 0.6 V. Determine the common-base (CB) current gain, α_o . Other device parameters are $D_E=1$ cm²/s, $D_B=10$ cm²/s, $D_C=2$ cm²/s, intrinsic electron-hole pair density = 9.65x10⁹ and W=0.5 μm .

$$\begin{split} \alpha_o &= \frac{I_{Cp}}{I_E} \\ I_E &= I_{Ep} + I_{En} \\ &= qA \left\{ \frac{D_p p_{no}}{W} e^{\left(qV_{EB}\right)/kT} + \frac{D_E n_{Eo}}{L_E} \left[e^{\left(qV_{EB}\right)/kT} - 1 \right] \right\} \\ I_{Cp} &= \frac{qAD_p p_{no}}{W} e^{\left(qV_{EB}\right)/kT} \end{split}$$

 $D_p = diffusion constant of hole in B = 10 cm²/s$

 p_{no} = hole minority carriers in B during thermal equilibrium

$$p_{no} = n_i^2/N_B = (9.65 \times 10^9)^2/10^{17} = 931.225 \text{ cm}^{-3}$$

 D_E = electron diffusion coefficient in E = 1 cm²/s

 n_{Eo} = electron minority carrier in E during thermal equilibrium

$$n_{E_0} = n_i^2/N_E = (9.65 \times 10^9)^2/10^{19} = 9.3122 \text{ cm}^{-3}$$

 L_E = electron diffusion length in E

$$L_{E} = \sqrt{D_{E}\tau_{E}} = \sqrt{1 \text{ cm}^{2}/\text{s} \left(10^{-8} \text{ s}\right)} = 10^{-4} \text{ cm}$$

$$I_{Cp} = I_{Ep} = \frac{\left(1.6 \times 10^{-19} \text{C}\right) \left(0.05 \times 10^{-2} \text{ cm}^2\right) \left(10 \text{cm}^2/\text{s}\right) \left(931.225 \text{cm}^{-3}\right)}{\left(0.5 \times 10^{-4} \text{cm}\right)} e^{\left(qV_{EB}\right)/kT}$$

$$I_{Cp} = I_{Ep} = 1.49 \times 10^{-14} \times 1.1505 \times 10^{10} A$$
$$= 1.7142 \times 10^{-4} A$$

$$I_{En} = \frac{\left(1.6x10^{-19}C\right)\left(0.05x10^{-2}\text{ cm}^{2}\right)\left(1\text{cm}^{2}/\text{s}\right)\left(9.3122\text{cm}^{-3}\right)}{\left(10^{-4}\text{ cm}\right)}\left(1.1505x10^{10}-1\right)$$

$$=8.5709 \times 10^{-8} \text{ A}$$

$$\alpha_{o} = \frac{I_{Cp}}{I_{E}} = \frac{1.7142 \times 10^{-4}}{1.715 \times 10^{-4}} = 0.9995$$

Emitter efficiency, $\gamma = I_{Ep} / (I_{Ep} + I_{En})$ = I_{Ep} / I_{E}

In the case of narrow Base, I_{Ep} = I_{Cp} Thus, γ = α_o .

